Vinylic Cations from Solvolysis. XXI. ${ }^{1,2}$ Solvent Effects on the External Ion Return and the Internal Return in Several Vinylic Solvolyses

Zvi Rappoport* and Yitzhak Apeloig
Contribution from the Department of Organic Chemistry, The Hebrew University, Jerusalem, Israel. Received January 17, 1974

Abstract

The solvolyses of cis- and trans-1,2-dianisyl-2-phenylvinyl bromides ($5-\mathrm{Br}$ and $6-\mathrm{Br}$), the cis chloride ($5-\mathrm{Cl}$), and the cis and trans mesylates (5-OMs and 6-OMs) in $80 \% \mathrm{EtOH}$ gave the ethers $\mathbf{5}-\mathrm{OEt}$ and $\mathbf{6 - O E t}$ and the ketone $\mathbf{2 5}$. Solvolysis of $5-\mathrm{Br}$ and $\mathbf{6 - B r}$ in $1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$ gave the acetates $5-\mathrm{OAc}$ and $\mathbf{6 - O A c}$ and the vinyl formates which decomposed to $\mathbf{2 5}$, while solvolysis of $5-\mathrm{Br}$ in $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ gave $5-\mathrm{OAc}$ and $6-\mathrm{OAc}$. Cis-trans isomerization of the vinyl halides was observed in all the solvents, and strong common ion rate depression was observed in the RCOOH media. Both phenomena were used to show the appearance of both the free ion 7 and the ion pair 8 during the solvolysis-isomerization, to calculate the ionization rate constant ($k_{\text {ion }}$) and to evaluate the extent of the external ion return and the internal return. The solvent effects on $k_{\text {ion }}\left(1: 1 \mathrm{AcOH}-\mathrm{HCOOH}>80 \% \mathrm{EtOH}>\mathrm{AcOH}>1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}\right.$), on the internal return ($\mathrm{AcOH} \sim 1: 1$ $\mathrm{AcOH}-\mathrm{HCOOH}>80 \% \mathrm{EtOH} \sim 1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$), and on the external ion return ($1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}>\mathrm{AcOH}>1: 1$ $\mathrm{AcOH}-\mathrm{HCOOH}>80 \% \mathrm{EtOH}$) are discussed in terms of the ionizing power, dissociating power, and nucleophilicity of the solvents. The use of the titrimetric rate constant $\left(k_{1}\right)$ as a model for $k_{\text {ion }}$ is discussed in relation to several kinetic parameters.

The intermediacy of ion pairs in the solvolysis of saturated compounds was extensively studied. ${ }^{3}$ In vinylic solvolysis, ${ }^{4}$ ion pairs were suggested as intermediates on the basis of stereochemical evidence, ${ }^{5 a-d}$ substituent effects, ${ }^{5 b}$ the effect of added base, ${ }^{5 \mathrm{~b}}$ the cis-trans interconversion of the unreacted substrate, $1.2,5 \mathrm{se}, \mathrm{f}$ and other kinetic evidence. ${ }^{5 \mathrm{~g}, \mathrm{~h}}$ Previous to our work,' kinetic evidence for ion pairs was obtained only in the acetolysis of 2-phenylthio-1,2-ditolylvinyl 2,4,6-trinitrobenzenesulfonate ${ }^{6}$ which showed a LiClO_{4} "special salt effect." ${ }^{7}$ However, free ("dissociated") cations, ${ }^{8 a}$ which were observed only in a limited number of saturated solvolyses, ${ }^{6,8.9}$ are intermediates in a relatively large number of vinylic and related solvolyses. ${ }^{10}$

In the simplified mechanistic Scheme $\mathrm{I}^{1,1}$ where $\mathrm{R}^{+} \mathrm{X}^{-}$is
Scheme I

a tight ion pair, and R^{+}is a free ion, our knowledge regarding the solvent effect on the "selectivity" of the free ion as measured by $\alpha=k_{-2} / k_{4}$ is meager. In aqueous-organic media, α decreases on increasing the water content, ${ }^{9}$, b. 10 j but data are absent for pure organic media. Increasing the dissociating power of the solvent, e.g., by the change AcOH $\rightarrow \mathrm{Ac}_{2} \mathrm{O},{ }^{12}$ increases the importance of R^{+}as a productforming intermediate, but comparisons are difficult since the ROAc is almost entirely derived from $\mathrm{R}^{+} \mathrm{X}^{-}$in AcOH , while 97% of it is formed from R^{+}in $\mathrm{Ac}_{2} \mathrm{O} .{ }^{12}$

The solvent effect on the extent of internal return, as measured by $1-F=k_{-1} /\left(k_{-1}+k_{2}+k_{3}\right)$ where F is the fraction of $\mathrm{R}^{+} \mathrm{X}^{-}$which gives products, was studied in several systems. The ion-pair return as measured by internal return with isomerization is more important for AcOH and trifluoroacetic acid (TFA) than for HCOOH and for alcohols, ${ }^{13.14}$ while oxygen equilibration in an arenesulfonate leaving group gave the following order for $1-F$: TFA $>\mathrm{AcOH} \simeq \mathrm{HCOOH}>\mathrm{MeOH} .{ }^{15}$ In aqueous acetone, $1-$ F decreases on increasing the water content, ${ }^{16}$ confirming that dissociation becomes more important as the ionizing power of the solvent increases. ${ }^{7 b}$
The preceding paper ${ }^{1}$ has shown that in the acetolysis of
cis- and trans-1,2-dianisyl-2-phenylvinyl bromides (5-Br and $\mathbf{6 - B r}$), ${ }^{17}$ methanesulfonates (mesylates, $\mathbf{5 - O M s}$ and $\mathbf{6 -}$ OMs), ${ }^{1}$ and the cis chloride ($5-\mathrm{Cl}$), ${ }^{17}$ almost all the products are derived from free R^{+}'s. The study of the concurrent cis-trans isomerization showed the importance of internal return and enabled comparison of the effects of the leaving group on both the internal return and the external ion return. Using the same substrates, we evaluate now the solvent effect on $1-F$ and α, using solvents which differ from AcOH in their nucleophilicities and dielectric constants. ${ }^{18}$

Results

Reactions in $\mathbf{8 0 \%}$ EtOH. (a) $5-\mathrm{Br}$, $\mathbf{6 - B r}$, and $5-\mathrm{Cl}$. Solvolyses of the vinyl halides in the presence of excess NaOH gave $20-25 \%$ of the ethers $5-\mathrm{OEt}$ and $\mathbf{6 - O E t}$ and $75-80 \%$ of the ketone 25 , but only 25 was observed in the presence of 2,6 -lutidine. The titrimetric rate coefficient k_{t} (eq 1) was

$$
\begin{equation*}
k_{t}=(2.3 / t) \log [a /(a-x)] \tag{1}
\end{equation*}
$$

constant throughout the run, although k_{t} was sometimes 10% lower than the average value after 2 half-lives. Simultaneous isomerization of unreacted halide accompanied the solvolysis. The first-order isomerization rate coefficient, $k_{\text {isom }}$ (eq 2), ${ }^{1}$ was calculated by assuming that at equilibri-

$$
\begin{align*}
& k^{5-\mathrm{Br}}{ }_{\text {isom }}= \\
& \quad(2.3 / t) \log \left\{\%(6-\mathrm{Br})_{\infty} /\left[(\% 6-\mathrm{Br})_{\infty}-(\% 6-\mathrm{Br})_{t}\right]\right\} \tag{2}
\end{align*}
$$

Table I. Solvolysis-Isomerization in 80% EtOH

Compd	Base	Conen, $10^{2} \mathrm{M}$	T, ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & 10^{6} k_{t}, \\ & \sec ^{-1} \end{aligned}$	Relative k_{t}	$\begin{gathered} 10^{6} k_{\text {isom, }},{ }^{a} \\ \sec ^{-1} \end{gathered}$	$\begin{gathered} 10^{6} k_{\text {ion, }}{ }^{b} \\ \sec ^{-1} \end{gathered}$	$\%$ of Wh RX^{c}	on pairs 8 ch give Products ${ }^{\text {d }}$
$5-\mathrm{Br}$	2,6-Lutidine	8.7	120.3	189 ± 4		120 ± 6	309 ± 10	39.0	61.0
$5-\mathrm{Br}$	NaOH	39	120.3	253 ± 7	1.32	115 ± 6	368 ± 13	31.5	68.5
5-Br	NaOH	39	130.2	504 ± 15		285 ± 14	789 ± 29	36.3	63.7
$5-\mathrm{Br}$	NaOH	39	60.0	1.52^{8}			$1.34{ }^{\text {e }}$		
$6-\mathrm{Br}$	NaOH	39	120.3	292 ± 9	1.52	155 ± 8	447 ± 17	34.6	65.4
$6-\mathrm{Br}$	NaOH	39	130.2	558 ± 7		302 ± 15	860 ± 22	35.0	65.0
$6-\mathrm{Br}$	NaOH	39	60.0	$2.32{ }^{e}$			3.10^{e}		
$5-\mathrm{Cl}$	NaOH	39	120.3	3.05 ± 0.17		0.90 ± 0.04	3.95 ± 0.57	23.0	77.0
$\mathrm{An}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Br}) \mathrm{An}^{\prime}$	NaOH	18-52	120.0	408 ± 27	2.12				
$\mathrm{An}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{An}^{\prime}$	NaOH	29	120.0	7.1 ± 0.5					
$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Br}) \mathrm{An}^{f}$	NaOH	30-50	120.0	192 ± 4	1.00				
$\mathrm{AnC}(\mathrm{Br})=\mathrm{CH}_{2}{ }^{\text {g }}$	NaOAc	18	120.0	248 ± 1	1.29				

${ }^{a}$ The error is estimated as $\pm 5 \%$. The $k_{\text {isom }}$ value was calculated by using 1 as the [$\left.5-\mathrm{Br}\right]-[6-\mathrm{Br}]$ equilibrium ratio. ${ }^{b}$ Calculated by eq 3 . The error is the combined error in the two terms. ${ }^{c}$ RX refers to a cis-trans mixture of the vinyl halides. ${ }^{d}$ Products are formed from either 7 or 8 (see text). ${ }^{e}$ Extrapolated value. ${ }^{\prime}$ From ref 26. ${ }^{*}$ From ref 10 b.
um the $5-\mathrm{Br}-6-\mathrm{Br}$ ratio is 1^{19} since a cis-trans vinyl halide equilibrium is not achieved during the run. The ionization rate constant, $k_{\text {ion }}$, was calculated from eq 3 (see below) and is given in Table I together with the other k 's and those for related compounds.

$$
\begin{equation*}
k_{\mathrm{ion}}=k_{t}+k_{\mathrm{isom}} \tag{3}
\end{equation*}
$$

Reaction of 0.044 M 1- Br with 0.087 M 2,6-lutidine and $0.087 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBr}$ gave a depressed rate constant, ${ }^{8 \mathrm{a}} 10^{4} k_{t}{ }^{\mathrm{d}}$ $=1.50 \pm 0.02 \mathrm{sec}^{-1}$ at 120.3°. By applying mechanistic Scheme II which involves the free cation 7 as the only cat-

Scheme II

${ }^{a} k^{7}{ }_{\text {RCOO }}$ in RCOOH media.
ionic intermediate and eq $4,{ }^{8 \mathrm{a}}$ an apparent selectivity constant $\alpha_{\text {app }}\left(=k_{\mathrm{r}} / k^{7} \mathrm{SOH}\right)$ of $31 . \mathrm{mol}^{-120}$ was calculated.

$$
\begin{equation*}
k_{t}{ }^{d}=k_{t}{ }^{0} /\left(1+\alpha_{a p p}\left[\mathrm{Br}^{-}\right]\right) \tag{4}
\end{equation*}
$$

Solvolysis of $5-\mathrm{Br}$ with excess of benzylthiolate ion at 120.5° gave a mixture containing 20% of $5-\mathrm{OEt}+6$-OEt and 80% of an approximately $1: 1$ mixture of the thiolates 5-SR and 6-SR. ${ }^{17}$ The isomerization was only moderately affected: 12% of $6-\mathrm{Br}$ was observed in the RBr fraction as compared with 17% in the absence of the benzylthiolate ion.
(b) $\mathbf{5 - O M s}, \mathbf{6 - O M s}$, and $\mathbf{5 - O T s}+\mathbf{6 - 0 T s}$. Solvolysis of $\mathbf{5 -}$ OMs, $\mathbf{6 - O M s}$, or a $56: 44$ mixture of $\mathbf{5}$-OTs to $\mathbf{6 - O T s}{ }^{\prime}$ was followed conductometrically in the presence of 2,6 -lutidine and was of a first order. The data are in Table II. The products are 5 -OEt +6 -OEt ($c a .1: 1)^{21}$ and the ethanone 25, while the vinyl bromides $5-\mathrm{Br}$ and $\mathbf{6 - B r}$ are also formed in the presence of $\mathrm{Et}_{4} \mathrm{NBr}$ (Table III). A lower limit of $\alpha_{\text {app }}$ of 0.9 1. $\mathrm{mol}^{-1} 20$ for the capture of R^{+}by Br^{-}was calculated

Table II. Solvolysis of the Vinyl Sulfonates in $80 \% \mathrm{EtOH}$

Compd a	$T,{ }^{\circ} \mathrm{C}$	$10^{5} k_{t}, \mathrm{sec}^{-1 b}$
5-OMs	60.0	2.80 ± 0.004
6-OMs	60.0	2.53 ± 0.0008
5-OTs $+6-$ OTs c	45.1	0.623 ± 0.0006
	60.0	3.62 ± 0.01
	120.3	1150^{d}

${ }^{a}[$ Substrate $]=0.004 M ;[2,6$-lutidine $]=0.045 M .{ }^{b}$ The error quoted is the standard deviation. ${ }^{c}$ A 56:44 mixture of 5-OTs to 6-OTs was used. ${ }^{d}$ Extrapolated value.
from these values. ${ }^{22}$ In all cases, $<3 \%$ of the isomeric mesylate was observed by nmr after 2 half-lives.
Reactions in $\mathrm{AcOH}-\mathrm{HCOOH}$ and $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ Mixtures. One-point runs with $0.044 \mathrm{M} 5-\mathrm{Br}$ and 0.087 M RCOONa at 99.7° gave $10^{4} k_{t}=6.34 \mathrm{sec}^{-1}$ after 45 min in $2: 1 \mathrm{HCOOH}-\mathrm{AcOH}$, while $10^{4} k_{t}=8.65 \mathrm{sec}^{-1}$ after 30 min in $72 \% \mathrm{HCOOH}-28 \% \mathrm{AcOH}$.

In a $1: 1 \mathrm{AcOH}-\mathrm{HCOOH}(\mathrm{v} / \mathrm{v})$ mixture containing the sodium carboxylates, the products at early reaction times were mainly the vinyl formates ($5-\mathrm{OCHO}$ and $\mathbf{6 - O C H O}$) (recognized by a band at $1740 \mathrm{~cm}^{-1}$ but were not isolated) and some of the acetates 5-OAc and 6-OAc (band at 1770 cm^{-1}). The vinyl formates decomposed rapidly, and the acetates are converted slowly to $\mathbf{2 5}$; after 340 min , the products are $25(59 \%), 5-\mathrm{OAc}+\mathbf{6 - O A c}(21 \%)$, and $5-\mathrm{OCHO}+$ 6-OCHO (21%), and after 45 hrs. they are 25 (97%) and the vinyl acetates (3%). Only 25 was formed in the slower solvolysis of $5-\mathrm{Cl}$

Due to common ion rate depression, the titrimetric rate coefficient k_{t} decreased strongly during the reaction, and k_{t} for $5-\mathrm{Br}$ at 82% reaction was half of the initial extrapolated value $k_{t}{ }^{0}$. A concurrent cis halide \rightleftharpoons trans halide isomerization took place, establishing an equilibrium of 54% of 5 Br and 46% of $6-\mathrm{Br}$ during the reaction. The $k_{\text {isom }}$ of eq 2 which is based on this ratio increased during the run.

In AcOH , the AcO^{-}is the capturing nucleophile, ${ }^{1}$ but in $1: 1 \mathrm{AcOH}-\mathrm{HCOOH} 7$ is captured by both the AcO^{-}and the HCOO^{-}ions, giving eq 5 where the subscripts desigrate of capture of $7=$

$$
\begin{equation*}
k_{\mathrm{HCOO}}\left[\mathrm{HCOO}^{-}\right]+k_{\mathrm{Aco}}\left[\mathrm{AcO}^{-}\right]=k_{\mathrm{RCOO}}\left[\mathrm{RCOO}^{-}\right] \tag{5}
\end{equation*}
$$

nate the capturing nucleophile. Since AcOH and HCOOH have similar nucleophilicities, ${ }^{23}$ we assumed that $k_{\mathrm{HCOO}}=$ $k_{\text {AcO }}$, thus obtaining the right-hand side of eq 5 where $\left[\mathrm{RCOO}^{-}\right]=\left[\mathrm{AcO}^{-}\right]+\left[\mathrm{HCOO}^{-}\right]$.

We calculated $k_{t}{ }^{0}$ and $\alpha_{\text {app }}\left(=k_{\mathrm{r}} / k^{7}{ }_{\mathrm{RCOO}}\right)$ from eq 6

$$
\begin{align*}
& 1 / k_{t}=1 / k_{t}{ }^{0}+\alpha_{a p p} / k_{t}{ }^{0}(1-n)[n \ln [n a / \\
&(n a-x)] / \ln [a /(a-x)]-1] \tag{6}
\end{align*}
$$

(where $n=\left[\mathrm{RCOO}^{-}\right]_{0} /\left[\mathrm{RX}_{0}\right.$) which is derived from the steady-state treatment of Scheme II. ${ }^{\text {I }}$ The values obtained are given in Table II. As in AcOH, ${ }^{1}$ computer simulation of Scheme II gave $\alpha_{\text {app }}$ values similar to those derived from eq 6 , a fit of the experimental concentration νs. time profiles for the decay of the starting bromide and the product formation but more isomerization than predicted from return from 7 alone.
Scheme III, which involves both the ion pair 8 which gives internal return to original RX ($k^{8}{ }_{i r}$) and isomeric RX^{\prime}

Table III. Solvolysis Products of the Vinyl Sulfonates in 80% EtOH

Substrate ${ }^{\text {a }}$	$\begin{gathered} \text { [2,6-Lutidine], } \\ M \end{gathered}$	[$\left.\mathrm{Et}_{4} \mathrm{NBr}\right], M$	Time, hr	25	Products, \% 5-OEt + 6-OEt ${ }^{b}$	$\begin{gathered} 5-\mathrm{Br}+ \\ 6-\mathrm{Br}^{c} \end{gathered}$
5-OMs	0.087		24	20	80	
			170	25	75	
6-OMs	0.087		170	30	70	
5-OMs	0.17	0.26	17	25 ± 4	63 ± 4	12
6-OMs	0.17	0.87	17	5	52 ± 2	43 ± 2

${ }^{a}$ [Substrate] $=0.043 \mathrm{M}$; reaction at $60^{\circ} .{ }^{b} \mathrm{~A}$ mixture of ca. $1: 1$ of $5-\mathrm{OEt}$ to $6-\mathrm{OEt}$. ${ }^{c} \mathrm{~A}$ mixture of 48% of $5-\mathrm{Br}$ and 52% of $6-\mathrm{Br}$ was formed.

Scheme III

${ }^{a}$ In 80% EtOH.
($k^{8}{ }_{\text {ir }}$) and dissociation to 7 ($k_{\text {diss }}^{8}$), and 7 which gives external ion return ($k^{7}{ }_{\mathrm{Br}}$) and products ($k^{7}{ }_{\mathrm{RCOO}}$), was therefore applied. ${ }^{1}$ The "total cis content" method in the form of eq 3 was used for calculating $k_{\text {ion }}$,' assuming that the unknown 5 -OCHO-6-OCHO equilibrium ratio is $54: 46$, as found with the bromides and the acetates. ${ }^{24}$ Indeed, eq 3 gave constant $k_{\text {ion }}$ values (Table IV). Scheme III was simulated as described earlier, ${ }^{1}$ until a fit was obtained between the experimental and calculated profiles for all the species. The resulting best α 's, the distribution of 7 among the return and product-forming routes (when $\left[\mathrm{Br}^{-}\right]=$ [$\left.\mathrm{RCOO}^{-}\right]$), the distribution of 8 between the return and dissociation routes, and related data in AcOH are given in Table IV.

Designating the fraction of ion pairs which give dissociation by F, the return $v s$. dissociation ratio is given by eq 7 , and $\alpha=\alpha_{\text {apd }} /(1-F)$.

$$
\begin{align*}
\left(k_{\mathrm{ir}}^{8}+k_{\mathrm{ir}}^{8}\right) / k_{\mathrm{diss}}^{8} & = \\
& \left(k^{5-\mathrm{Br}}{ }_{\mathrm{ion}} / k_{t}^{0}\right)-1=(1-F) / F \tag{7}
\end{align*}
$$

Solvolysis at 99.3° of $5-\mathrm{Br}$ in the presence of (i) 0.076 M $\mathrm{Bu}_{4} \mathrm{NBr}$ and $0.011 M \mathrm{NaOAc}$ and of (ii) $0.14 M \mathrm{Bu}_{4} \mathrm{NBr}$ and 0.087 M NaOAc gave respectively $10^{5} k_{t}{ }^{\mathrm{d}}=7.15 \mathrm{sec}^{-1}$ at 59% reaction and $10^{5} k_{t}{ }^{\mathrm{d}}=4.7 \mathrm{sec}^{-1}$ at 70% reaction; i.e., $k_{t}{ }^{\mathrm{d}} / k_{t}{ }^{0}$ are 0.25 and 0.10 . From eq 8 , by using an average

$$
\begin{equation*}
k_{t}{ }^{d}=k_{t}{ }^{0} /\left(1+\alpha_{\mathrm{app}}\left[\mathrm{Br}^{-}\right] /\left[\mathrm{RCOO}^{-}\right]\right) \tag{8}
\end{equation*}
$$

[$\left.\mathrm{RCOO}^{-}\right]$of $0.061 M, \alpha_{\text {app }}>4.3$ from experiment (ii). From $k_{1}{ }^{\mathrm{d}} / k_{t}{ }^{0},>90 \%$ of the products is formed from 7.

Isomerization in the solvolysis of $5-\mathrm{Cl}$ is apparent by ir, but the evaluation of k isom is associated with high error and was not attempted.

In $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$, the products from $5-\mathrm{Br}$ are 54% of $5-\mathrm{OAc}$ and 46% of $6-\mathrm{OAc}$, and the common ion rate depression within a run was the strongest yet found for compound $5-\mathrm{Br}$. This is exemplified in Table V , which also shows the constancy of $k_{\text {ion }}$ as calculated by eq 3 . Other data are in Table IV.

Reaction in Trifluoroacetic Acid. A solution of $6-\mathrm{Br}$ in TFA at room temperature turns immediately pink, then brown, and finally black within 1 hr . When a mixture of 5 Br and $6-\mathrm{Br}$ is trifluoroacetolyzed in the presence of 0.087 $M \mathrm{NaOOCCF}_{3}$ at $65.5^{\circ}, 10^{4} k_{t}=4.2 \mathrm{sec}^{-1}$ after 30 min , and the ir show the presence of $\mathbf{2 5}$ and of a vinyl trifluoroacetate (band at $1790 \mathrm{~cm}^{-1}$).

Isomerization of 1,2-Dianisyl-2-phenylethylenes. No mutual isomerization of the ethylenes $5-\mathrm{H}$ and $\mathbf{6 - H}$ takes place
in $80 \% \mathrm{EtOH}-\mathrm{NaOH}$ after 64 hr at 120°, i.e., $10^{6} k_{\text {isom }}<$ $0.45 \mathrm{sec}^{-1}$. In $1: 1 \mathrm{AcOH}-\mathrm{HCOOH}-0.087 \mathrm{M} \mathrm{RCOONa}$, an equilibrium mixture containing 51.5% of $5-\mathrm{H}$ and 48.5% of $6-\mathrm{H}$ was obtained starting from $5-\mathrm{H}$, and the first-order $k_{\text {isom }}$ is $1.52 \pm 0.01 \times 10^{-4} \mathrm{sec}^{-1}$ at 99.7°.

Discussion

Exclusion of Addition-Elimination Routes. For using the isomerization as a mechanistic tool, it is essential to exclude addition-elimination isomerization routes where a nucleophile or an electrophile adds to the double bond and departs after a free rotation around the $\mathrm{C}_{\alpha \gamma}-\mathrm{C}_{\beta}$ bond in the intermediate.

Nucleophilic addition-elimination $\left(\mathrm{Ad}_{\mathrm{N}}-\mathrm{E}\right)^{25}$ is excluded in $80 \% \mathrm{EtOH}$ by comparing our solvolysis rates with those for related systems, ${ }^{25 b, 26}$ by the stereochemistry in the presence of $\mathrm{PhCH}_{2} \mathrm{~S}^{-}$ion, ${ }^{17}$ and by the $k_{\mathrm{Br}} / k_{\mathrm{Cl}}$ and the $k_{\mathrm{Cl}} / k_{\mathrm{OMs}}$ ratios (Table VI) which are close to unity in the $\mathrm{Ad}_{\mathrm{N}}-\mathrm{E}$ route. ${ }^{25 \mathrm{~s}, 27}$ The isomerization rate ratios ($\left.k_{\text {isom }}(\mathrm{RBr}) / k_{\text {isom }}(\mathrm{RH})>250-340\right)$ argue strongly for isomerization via $\mathrm{C}-\mathrm{Br}$ bond heterolysis. Electrophilic addi-tion-elimination $\left(\mathrm{Ad}_{\mathrm{E}}-\mathrm{E}\right)^{10 \mathrm{~b} .28}$ in $\mathrm{AcOH}-\mathrm{HCOOH}$ and $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ is excluded by the nature of the products, $1,28 \mathrm{~b}$ by the $k_{\mathrm{Br}} / k_{\mathrm{Cl}}$ ratio ${ }^{\mathrm{I} 0 \mathrm{~b} .29}$ and the $k_{\mathrm{OMs}} / k_{\mathrm{Br}}$ ratio, and by analogy with the SN1 solvolysis of 1-anisyl-2-methylpro-pen-l-yl tosylate in TFA ${ }^{30 \mathrm{a}}$ and in $\mathrm{AcOH}-\mathrm{HCOOH}$ mixtures. ${ }^{30 \mathrm{~b}}$

In $1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$ at $99.7^{\circ}, k_{\text {isom }}(5-\mathrm{H}) / k_{\text {isom }}{ }^{0}$ (5$\mathrm{Br})=0.6$, but it can still be argued that contribution from the $\mathrm{Ad}_{\mathrm{E}}-\mathrm{E}$ route for the isomerization of $5-\mathrm{Br}$ is small. However, the isomerization of $5-\mathrm{Cl}$ is qualitatively much slower than that of $5-\mathrm{H}$, and contribution from the $\mathrm{Ad}_{\mathrm{E}}-\mathrm{E}$ route cannot be excluded.

Intermediates in $\mathbf{8 0 \%} \mathbf{E t O H}$. The absence of common ion rate depression during a run in $80 \% \mathrm{EtOH}$ is consistent with product formation either (a) via free ions 7 when capture is faster than return ($k^{7}{ }^{7} \mathrm{SOH}[\mathrm{SOH}] \gg k^{7}{ }_{\mathrm{Br}}\left[\mathrm{Br}^{-}\right]$), or (b) via ion pairs 8 when k^{8} diss $\ll k^{8}$ SOH (capture of 8 by the solvent), or via both a and b. ${ }^{8 \mathrm{a}}$ From the $k_{t}{ }^{\mathrm{d}} / k_{t}{ }^{0}$ ratio we calculate that $>21 \%$ of the products is derived from 7 . This is a lower limit since the salt effect on $k_{t}{ }^{0}$ was neglected, and higher $\left[\mathrm{Br}^{-}\right]$concentrations were not used. ${ }^{31}$ The lower $\alpha_{\text {app }}$ than that for $5-\mathrm{Br}$ in AcOH^{1} is due to the higher nucleophilicity of $80 \% \mathrm{EtOH}$.

In spite of some product formation from 7, the bulk of the product can still be derived from 8, and it may be argued that the formation of 80% of $5-\mathrm{SR}$ and $\mathbf{6 - S R}$ is due to capture of both 7 and 8 by the strong thio-nucleophile, $\mathrm{PhCH}_{2} \mathrm{~S}^{-}$. However, since $k_{\text {isom }}$ is only moderately reduced, we believe that isomerization occurs mainly via a tight ("intimate") uncapturable ion pair 8. ${ }^{32}$ This is the justification for calculating $k_{\text {ion }}$ by eq 3 from the sum of $k_{\text {isom }}$ (via the uncapturable 8) and k_{t} (via 7 which does not return within a run). From the $k_{t} / k_{\text {isom }}$ ratios, $31.5-39 \%$ of the ion pairs from $5-\mathrm{Br}$ and $\mathbf{6 - B r}$ returns to covalent bromide with isomerization (Table I).
Table IV. Kinetic Data for Solvolyses in Carboxylic Acid Media

$\begin{gathered} \text { Compd }^{a} \\ \mathrm{RX} \end{gathered}$	Solvent	T, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} 10^{5} k_{\mathrm{ionon}}{ }^{\prime \prime} \\ \sec ^{-1} \end{gathered}$	$\begin{aligned} & 10^{5} k_{t^{0}},{ }^{c} \\ & \sec ^{-1} \end{aligned}$	$\alpha_{\text {ipp }}{ }^{\text {c }}$	α^{d}	\% of the ion pairs 8^{d}			$\%$ of the free ions 7^{e} --which give	
$5 \cdot \mathrm{Br}$	1:1 AcOH-HCOOH (v/v)	99.7	55.0 ± 0.1	30.6 ± 0.9	2.57 ± 0.20	5.45	23.4	23.0	53.6		
$6 \cdot \mathrm{Br}$	1:1 AcOH-HCOOH (v/v)	99.7	64.7 ± 0.5	33.5 ± 0.1	2.67 ± 0.22	5.93	22.7	22.3	55.0	84.5	15.5
$5 . \mathrm{Cl}$	1:1 AcOH-HCOOH (v/v)	99.7		2.03 ± 0.12	2.64 ± 0.50						
$6 \cdot \mathrm{Br}$	$1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$	120.3	4.00 ± 0.10	2.77 ± 0.36	26.6 ± 4.7	87.0	31.0		69.0	98.9	1.1
$5-\mathrm{Br}^{\circ}$	AcOH	120.3	7.52 ± 0.05	4.02 ± 0.11	21.3	45.0	25.4	22.0	52.6		
$6-\mathrm{Br}^{9}$	AcOH	120.3	7.73 ± 0.11	4.04 ± 0.10	21.3	45.0	25.4	22.0	52.6	97.8	2.2
5- Br^{h}	AcOH	99.7	1.00	0.418							
6- Br^{h}	AcOH	99.7	0.99	0.392							
$5-\mathrm{Cl}^{0}$	AcOH	120.3	0.306 ± 0.018	0.168 ± 0.018	5.7	15.0	20.3	17.7	62.0	93.7	6.3

The lower nucleophilicity of the OMs^{-}anion resulted in the absence of both ion and ion-pair return with isomerization. The formation of 43% of a $1: 1$ mixture of $5-\mathrm{Br}$ and 6 Br in the solvolysis of $5-\mathrm{OMs}$ with excess Br^{-}suggests that $>43 \%$ of the products is derived from the sp-hybridized 7.33 The lower $\alpha_{\text {app }}(0.9)$ in this capture experiment, ${ }^{22}$ as compared with $\alpha_{\text {app }}=3$ from the common ion rate depression in the reaction of $5-\mathrm{Br}$, may be due to the different reaction conditions.

That the ethers are the main products from 5-OMs at 60° but the minor products from $5-\mathrm{Br}$ at 120.3° is due to the increased ROEt $\rightarrow \mathbf{2 5}$ decomposition at the higher temperature. This enol ether hydrolysis in $80 \% \mathrm{EtOH}$ is dependent on the bulk of the β substituents since α-bromo- p methoxystyrene gives no ether, ${ }^{10 b, 34}$ and 1-bromo-1-pmethoxyphenylpropene gives the ether as a minor product. ${ }^{5 f .35}$ The higher decomposition in the presence of 2,6 lutidine as compared with NaOH has precedent, ${ }^{10 \mathrm{~g}}$ while the higher $k_{\text {ion }}$ in the presence of NaOH compared with 2,6-lutidine is ascribed to a positive salt effect on the heterolysis rate.

Intermediates in Carboxylic Acids Media. Solvent Effect on the Ionization, Internal Return, and External Ion Return. In the less nucleophilic carboxylic acids media, the increased life-time of the cationoid intermediates leads to an extensive external ion return. Tables I and IV enable comparisons of the ionization, internal return, and external ion return as a function of four solvent properties: (a) ionizing power, measured by Y values; ${ }^{36}$ (b) dissociating power, measured by the dielectric constant ϵ; (c) nucleophilicity of the solvent, measured by the $N_{\mathrm{PW}}{ }^{23 \mathrm{a}}$ or the $N_{\mathrm{BS}}{ }^{23 \mathrm{~b}}$ parameters, ${ }^{37}$ and (d) anion solvation. Table VII shows that 80% EtOH is a good ionizing solvent and the most dissociating and nucleophilic among our solvents. Among the carboxylic acids which have similar nucleophilicities, ${ }^{23} \mathrm{AcOH}-$ HCOOH is the most ionizing and dissociating, AcOH is moderately ionizing and poorly dissociating, and AcOH_{-} $\mathrm{Ac}_{2} \mathrm{O}$ is moderately dissociating and poorly ionizing.

The ionization rate is mainly determined by the ionization power, and the relative $k_{\text {ion }}$ at 120.3° [1:1 AcOH$\mathrm{Ac}_{2} \mathrm{O}(0.53)<\mathrm{AcOH}(1.0)<80 \% \mathrm{EtOH}(4.9)<1: 1$ $\mathrm{AcOH}-\mathrm{HCOOH}$ (52 at 99.7°)] indeed follows the Y values. An $m Y$ plot ${ }^{36}$ for the four solvents should be curved as shown by the " m " values ${ }^{38}$ for the $80 \% \mathrm{EtOH}-\mathrm{AcOH}$, $\mathrm{AcOH}-1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$, and $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ pairs (Table VI). The low m values (excluding that in $\mathrm{AcOH}-$ HCOOH) which are common in vinylic solvolysis ${ }^{5 b}, 10 \mathrm{~g}, \mathrm{i}, 25 \mathrm{~b}, 26,39$ are not due to solvent assisted k_{s} route ${ }^{40}$ which is sterically hindered in triarylvinyl halides. ${ }^{2}$, $10 \mathrm{a}, \mathrm{h}, \mathrm{i}, 39 \mathrm{~b}$

The similarity of the reactivity ratios with those for p methoxyneophyl tosylate, a model for the k_{Δ} route ${ }^{41}$ [1:1 $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}\left(0.52\right.$ at 25°) $<\mathrm{AcOH}(1.0)<80 \% \mathrm{EtOH}$ (1.85 at 75°) $<1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$ (32 at 25°) $]^{42}$ may indicate β-anisyl participation in the ionization. This is excluded by both the similar rates and product distributions from both $5-\mathrm{Br}$ and $6-\mathrm{Br}$. We believe that in both cases the low solvent sensitivities arise from an extensive dispersal of the positive charge over the anisyl group and from a local dielectric constant near the reaction center which is relatively insensitive to that of the bulk of the solvent, due to crowding of the bulky substituents around the cationic orbital. The specific solvation via hydrogen bonding to the incipient halide ion is much less sensitive to the steric hindrance, and m in $\mathrm{AcOH}-\mathrm{HCOOH}$ is in the region characteristic of the k_{c} route. ${ }^{43}$

A remarkable feature of the behavior of the ion pair is that dissociation takes over completely (in RCOOH) or mainly (in $80 \% \mathrm{EtOH}$) over capture by the solvent. The inherent electronic stability of the α-anisylvinyl cation, com-

Table V. Solvolysis of $0.043 M 5-\mathrm{Br}$ in $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ Containing 0.087 M NaOAc at 120.3°

Time, min	0	70	115	282	580	900	2250	2680	6600
\% reaction		8.4	10.25	18.0	26.2	33.1	48.9	53.8	72.2
$10^{6} k_{t}, \mathrm{sec}^{-1}$	$27.7{ }^{\text {a }}$	20.8	15.7	11.7	8.73	7.44	4.97	4.80	3.23
$\% 6-\mathrm{Br}^{\text {b }}$		3.7	7.1	17.2	31.4	37.2	46.0	46.0	46.0
$\%$ isomerization ${ }^{c}$		8.0	15.5	37.4	68.4	80.9	100	100	100
$10^{6} k_{\text {isoml }}, \mathrm{sec}^{-1}$	$12.3{ }^{\text {a }}$	19.8	24.5	27.6	33.1	30.7			
$10^{6} k_{\text {ion }}, \mathrm{sec}^{-1}$		40.6	40.2	39.3	41.8	38.1		40.0 ± 1.0^{d}	

${ }^{a}$ Extrapolated value. ${ }^{b}$ In the RBr fraction. ${ }^{c}$ Based on the observed infinity value of $46 \% 6$ - $\mathrm{Br} .{ }^{d}$ Average value.
Table VI. Comparison of Kinetic and Activation Parameters Based on $k_{t}{ }^{0}$ (or $\left.k_{t}\right)^{a}$ and $k_{\text {ion }}$, Respectively

Parameter	Solvent ${ }^{\text {b }}$	T, ${ }^{\circ} \mathrm{C}$	-Based on-		Parameter	Compd	T, ${ }^{\circ} \mathrm{C}$	-Based on-	
			$k_{i}{ }^{0}$	$k_{\text {ion }}$				$k_{t}{ }^{0}$	$k_{\text {ion }}$
$k(5-\mathrm{Br}) / k(6-\mathrm{Br})$	$80 \% \mathrm{EtOH}$	120.3	0.86	0.82	$\left(k_{80} \% \mathrm{EtOH} / k_{\mathrm{RCOOH}}\right)_{\mathrm{Y}=0}$	$5-\mathrm{Br}$	99.7	0.61	0.46
		130.2	0.90	0.92	$\left(k_{80} \% \mathrm{EtOH} / k_{\mathrm{RCOOH}}\right)_{\mathrm{Y}=0}$	$6-\mathrm{Br}$	99.7	0.74	0.61
	$1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$	99.7	0.91	0.85	$m(\mathrm{AcOH}-80 \% \mathrm{EtOH})$	$5-\mathrm{Br}$	120.3	0.57	0.44
k (5-OMs $) / k$ (6-OMs)	80\% EtOH ${ }^{\text {c }}$	60.0	1.11	1.11		$6-\mathrm{Br}$	120.3	0.51	0.47
$k(5-\mathrm{Br}) / k(5-\mathrm{Cl})$	80\% EtOH	120.3	83	93		$5-\mathrm{Cl}$	120.3	0.14	d
	$1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$	99.7	15.1	d	$m(\mathrm{AcOH}-\mathrm{HCOOH})$	$5-\mathrm{Br}$	99.7	0.72	0.78
$k(5-\mathrm{OMs}) / k(5-\mathrm{Br})$	$80 \% \mathrm{EtOH}$	60.0	18.4	20.8		$6-\mathrm{Br}$	99.7	0.75	0.80
$k(6-\mathrm{OMs}) / k(6-\mathrm{Br})$	$80 \% \mathrm{EtOH}$	60.0	10.8	8.2		$5-\mathrm{Cl}$	99.7	0.84	d
$k(\mathrm{OTs}) / k(\mathrm{Br})^{e}$	80\% EtOH	60.0	18.8	16.3	$m\left(\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}\right)$	$5-\mathrm{Br}$	120.3	0.33	0.19
		120.3	42.2	28.2	$\Delta H^{*}(80 \% \mathrm{EtOH})^{g}$	5-Br	120.3-130.2	21.3	23.6
$k(\mathrm{OTs}) / k(\mathrm{OMs})^{\prime}$	80\% EtOH	60.0	1.36	1.36	$\Delta S^{*}(80 \% \mathrm{EtOH})^{h}$	$5-\mathrm{Br}$	120.3	-20	-12
					$\Delta H^{*}(80 \% \mathrm{EtOH})$	$6-\mathrm{Br}$	120.3-130.2	20.0	20.3
					$\Delta S^{*}(80 \% \mathrm{EtOH})$	$6-\mathrm{Br}$	120.3	-23	-21
					$\Delta H^{*}(80 \% \mathrm{EtOH})^{c, i}$	$5-\mathrm{OTs}+6$-OTs	45.0-60.0	24.2	24.2
					$\Delta S^{*}(80 \% \mathrm{EtOH})^{i}$	$\mathbf{5 - O T s}+\mathbf{6 - O T s}$	60.0	-5	-5

${ }^{a}$ Based on $k_{t}{ }^{0}$ in the RCOOH media and on k_{t} in $80 \% \mathrm{EtOH},{ }^{b} 80 \% \mathrm{EtOH}$ contains NaOH unless otherwise stated; RCOOH media contain RCOONa. ${ }^{c}$ Containing 2,6-lutidine. ${ }^{d} k_{\text {ion }}$ for $\mathbf{5 - C l}$ was not calculated due to the high error in $k_{\text {isor. }}$. ${ }^{e}$ Ratio of k (5-OTs +6 -OTs) to the average k for $5-\mathrm{Br}$ and $\mathbf{6 - \mathrm { Br }}{ }^{\prime}$ Ratio of $k(5-\mathrm{OTs}+\mathbf{6 - O T s})$ to the average k of $\mathbf{5 - O M s}$ and $\mathbf{6 - O M s}$. \quad Estimated error, $\pm 2 \mathrm{kcal}$ mol ${ }^{-1}$. ${ }^{h}$ Estimated error, $\pm 6 \mathrm{eu}^{i}{ }^{i}$ Estimated error, $\pm 1.5 \mathrm{kcal} \mathrm{mol}^{-1} .{ }^{i}$ Estimated error, $\pm 5 \mathrm{eu}$.

Table VII. Ionizing Power (Y), Dissociating Power (ϵ), and Nucleophilicity ($N_{\text {PW }}$ and $N_{\text {Bs }}$) of Several Solvents

Solvent	Y^{a}	ϵ^{b}	$N_{\mathrm{PW}^{c}}$	$N_{\mathrm{BS}^{d}}$
$80 \% \mathrm{EtOH}$	0.00	35.80^{f}	0.00	0.00
AcOH	-1.64	6.2^{g}	-1.52	-2.05
$1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$				
$(\mathrm{v} / \mathrm{v})$ $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ $(\mathrm{v} / \mathrm{v})$	0.76	32.3^{h}	-1.66	-2.05

${ }^{a}$ From ref $36 \mathrm{c} .{ }^{b}$ At 20 or at $25^{\circ} .{ }^{c}$ From ref $23 \mathrm{a} .{ }^{d}$ From ref 23 b . \& Average of Y values for AcOH and $\mathrm{Ac}_{2} \mathrm{O}$. D. Decroocq, Bull. Soc. Chim. Fr., 127 (1964). ${ }^{\text {g O W. W. Kolling and W. L. Cooper, }}$ Anal. Chem., 42, 758 (1970). ${ }^{n}$ Average of ϵ values for AcOH and $\mathrm{HCOOH} .{ }^{i}$ Interpolated from data in ref g, this table. Interpolation of the data of R. T. Myers [J. Phys. Chem., 69, 700 (1965)] gives $\epsilon=13.5$.
bined with the relatively large distance between the solvation shell and the shielded cationic orbital, reduces the collapse rate with SOH and increases the dissociation rate.

The extent of internal return is expected to decrease on increasing the dissociating power, but the order and the magnitude of the $1-F$ values $[\mathrm{AcOH}(0.47) \sim 1: 1 \mathrm{AcOH}-$ $\mathrm{HCOOH}(0.46)>80 \% \mathrm{EtOH}(0.32) \sim 1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ (0.31)] do not follow this prediction. While our $1-F$ values cover a smaller range than those in saturated systems, ${ }^{13.15}$ the identical internal return in AcOH and in 1:1 $\mathrm{AcOH}-\mathrm{HCOOH}$ is in contrast with those for several saturated systems where $1-F(\mathrm{AcOH})>1-F(\mathrm{HCOOH}),{ }^{13}$ although $1-F$ values from ${ }^{18} \mathrm{O}$-equilibration studies behave similarly. ${ }^{13}$ It is tempting to ascribe the insensitivity of the $1-F$ values to a high degree of tightness in the ion pair, and this is supported by the absence of LiClO_{4} "special salt effect" in the solvolysis of $5-\mathrm{Br}$ in $\mathrm{AcOH} .{ }^{\prime}$

The external ion return, as measured by α, can rarely be compared for several solvents either since products are formed from ion pairs, or only $\alpha_{\text {app }}$ is measured. The α
values should be mainly determined by the nucleophilicity of the anions toward 7, and their increase for Br^{-}in the series $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}>\mathrm{AcOH}>\mathrm{AcOH}-\mathrm{HCOOH}$ parallels the decreased solvation by hydrogen bonding to Br^{-} throughout the series $\mathrm{Ac}_{2} \mathrm{O}<\mathrm{AcOH}<\mathrm{HCOOH}$. Apparently, the parallel change in the solvation of RCOO^{-}is lower. Solvation arguments also suggest that Cl^{-}is less nucleophilic than Br^{-}in protic solvents, ${ }^{44}$ and consequently that $\alpha\left(\mathrm{Br}^{-}\right)>\alpha\left(\mathrm{Cl}^{-}\right)$. Surprisingly, while this holds in $\mathrm{AcOH},{ }^{\prime}$ in $1: 1 \mathrm{AcOH}-\mathrm{HCOOH}$, a solvent where the inequality should be more pronounced, $\alpha_{\text {app }}\left(\mathrm{Br}^{-}\right)=\alpha_{\mathrm{app}}\left(\mathrm{Cl}^{-}\right)$. Since $\alpha(1-F)=\alpha_{\text {app }}, \alpha\left(\mathrm{Br}^{-}\right)$can be higher than $\alpha\left(\mathrm{CL}^{-}\right)$ only when $(1-F)$ for $\mathrm{Cl}^{-}>(1-F)$ for Br^{-}. This inequality could hold for an unsolvated halide ion in the ion pair, but it contradicts the higher $1-F$ for Br^{-}as compared with Cl^{-}in AcOH. ' At present we are unable to explain the apparent similar external ion returns of Br^{-}and Cl^{-}.

A lower $\alpha(80 \% \mathrm{EtOH})$ is expected but comparison with $\alpha(\mathrm{RCOOH})$ is impossible since the extent of capture by the different nucleophiles $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \mathrm{OH}^{-}, \mathrm{EtO}^{-}\right)$is unknown.

The combination of the high stability of 7 due to steric crowding and α-anisyl stabilization' with the low solvent nucleophilicity leads to the high $\alpha\left(\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}\right)$.
$\boldsymbol{k}_{\boldsymbol{t}}$ as a Measure of $\boldsymbol{k}_{\text {ion }} . k_{t}$ is the parameter usually measured in solvolysis, while $k_{\text {ion }}$ is the appropriate parameter for reactivity comparison. Various kinetic parameters which are based on k_{t} and $k_{\text {ion }}$ were compared in the preceding paper in AcOH , and they are compared now in the other solvents (Table VI).
(a) Cis-Trans Reactivity Ratio. The $k(5-\mathrm{Br}) / k(6-\mathrm{Br})$ ratios are close to unity in all the solvents, and the difference between using k_{t} and $k_{\text {ion }}$ is within the combined experimental errors. The effect of substituents on k_{t} in $80 \% \mathrm{EtOH}$ is mainly additive, but the change of a β-phenyl to a β-anisyl group is lower than that observed for the $\mathrm{Ar}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Br}) \mathrm{Ph}$ system in $60 \% \mathrm{EtOH} .{ }^{1 \text { of }}$ Apparently, the
lower ability of the α-aryl to support a positive charge results in a greater response to the electronic effect of the β substituents.
(b) Leaving Groups Reactivity Ratios. The $k_{\mathrm{Br}} / k_{\mathrm{CI}}$ ratio differs only slightly when based on k_{t} or $k_{\text {ion }}$, and is characteristic of SNI reactions. ${ }^{256,26,45}$ The order of the ratios, $80 \% \mathrm{EtOH}>\mathrm{AcOH}>\mathrm{AcOH}-\mathrm{HCOOH}$, reflects a more efficient solvation of the incipient chloride ion in the more acidic solvents. ${ }^{45 \mathrm{~d}}$

The low $k_{\mathrm{OMs}} / k_{\mathrm{Br}}$ and $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratios are of interest in connection with Hoffmann's view of the mechanistic importance of these ratios, ${ }^{46}$ and they were discussed earlier. ${ }^{47}$ We argued ${ }^{1}$ that since $1-F(\mathrm{ROMs})<1-F(\mathrm{RBr})$, the $k_{\mathrm{OMs}} / k_{\mathrm{Br}}$ and $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratios which are based on k_{t} would be higher than those based on $k_{\text {ion }}$. Table VI shows that this is generally the case except for the $k(5-\mathrm{OMs}) /$ $k(5-\mathrm{Br})$ in $80 \% \mathrm{EtOH} .{ }^{48}$
(c) Activation Parameters. The activation parameters in $80 \% \mathrm{EtOH}$ resemble those for related systems. ${ }^{10 i, 26} \mathrm{We}$ believe that the difference in the values based on k_{t} or on $k_{\text {ion }}$ for $5-\mathrm{Br}$ results from a relative large error due to the small temperature interval studied. ${ }^{49}$
(d) Solvent Effects. Due to the relative solvent insensitivity of the F values, the use of k_{t} instead of $k_{\text {ion }}$ has little effect on classifying the " m " values ${ }^{38}$ as "high" or "low." The ratios $k_{80 \% \mathrm{EtOH}} / k_{\mathrm{RCOOH}}$ at constant $Y(=0)$ value, which were obtained by extrapolation to 99.7°, and assuming a linear $m Y$ behavior for $\mathrm{AcOH}-\mathrm{HCOOH}$ mixtures, are given in Table VI. These ratios were recently suggested by Bentley and Schleyer ${ }^{50}$ as new tools for recognizing internal return. For a k_{c} process, they are $c a .0 .5-1.0$, and it was argued that they would be greater in solvolyses where internal return is absent. For our compounds, the ratios based on k_{t} are 0.61-0.74 and those based on $k_{\text {ion }}$ are lower, strengthening Bentley and Schleyer's argumentation ${ }^{50}$ and indicating the absence of solvent participation in our solvolyses.

Experimental Section

Materials and Solvents. The preparation and isolation of $5-\mathrm{Br}$, $6-\mathrm{Br}, 5-\mathrm{Cl}, 5-\mathrm{H}, 6-\mathrm{H}, 5-\mathrm{OMs}, 6-\mathrm{OMs}, 5-\mathrm{OTs}+6-\mathrm{OTs}, 5-\mathrm{OAc}$ and 6 -OAc, and 25 were described earlier. ${ }^{1,17}$ Formic acid was purified according to Winstein and Marshall ${ }^{51}$ and $80 \% \mathrm{EtOH}$ according to Grob, ${ }^{34}$ and acetic anhydride was distilled twice, and the fraction boiling at 139° was used. Tetra- n-butylammonium bromide (Eastman), mp $107-108^{\circ}$, was crystallized from ethyl acetate.
1,2-Di(p-methoxyphenyl)-2-phenylviny1 Ethyl Ethers (5-OEt + $6-\mathrm{OEt})$. A mixture of $5-\mathrm{Br}$ and $6-\mathrm{Br}(2 \mathrm{~g}, 5 \mathrm{mmol})$ and silver carbonate ($1.4 \mathrm{~g}, 5 \mathrm{mmol}$) was refluxed in absolute $\mathrm{EtOH}(30 \mathrm{ml})$ in the dark for 15 hr . The hot mixture was filtered, the solvent was evaporated, and nmr on the remaining oil is consistent with the presence of 70% of $5-\mathrm{OEt}+\mathbf{6 - O E t}$ and 30% of the ketone $\mathbf{2 5}$. Two crystallizations ($\mathrm{MeOH}, 25^{\circ}$) gave pale yellow crystals of an approximately $1: 1$ cis-trans mixture of $1,2-\mathrm{di}(p-$ methoxyphenyl)-2phenylvinyl ethyl ethers, mp 141-145 $(1.4 \mathrm{~g}, 80 \%): \delta\left(\mathrm{CDCl}_{3}\right)$ 1.17 ($3 \mathrm{H}, 2$ merging t, Me), $3.62\left(2 \mathrm{H}, 2\right.$ merging $\mathrm{q}, \mathrm{CH}_{2}$), 3.65 , 3.68, $3.70(6 \mathrm{H}, 3 \mathrm{~s}$ in a 1:2:1 ratio, MeO$), 6.43-7.20(13 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}) ; \lambda_{\max }\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) 236 \mathrm{~nm}(\epsilon 16,900)$, $301(17,800) ; \nu_{\max }\left(\mathrm{CS}_{2}\right)$ 3050-2870 (s), 2830 (s), 1295 (s), 1248 (v), 1172 (v), 1040 (v); m/e 360 (M, 99\%), 331 (M-Et, 77\%), 316 ($\mathrm{AnC}(\mathrm{Ph})=\mathrm{C}^{+} \mathrm{HAn}$, $3 \%), 315\left(\mathrm{AnC}(\mathrm{Ph})=\mathrm{C}^{+} \mathrm{An}, 2.2 \%\right), 303\left(\mathrm{An}_{2} \mathrm{CPh}^{+}, \mathrm{B}\right), 195(p-$ methoxyfluorenyl ${ }^{+}, 23 \%$) 135 ($\mathrm{AnCO}^{+}, 22 \%$).
Isomerization of 1,2-Dianisyl-2-phenylethylenes. The cis-trans ratio of the ethylenes was determined from the intensities of the methoxy signals ($5-\mathrm{H}: \delta 3.69 ; 6-\mathrm{H}: \delta 3.73$ in CDCl_{3}). $5-\mathrm{H}$ or $6-\mathrm{H}$ (96 mg) in $0.49 \mathrm{M} \mathrm{NaOH}-80 \% \mathrm{EtOH}(7 \mathrm{ml})$ were kept for 64 hr at 120°. The mixture was poured into chloroform-water, separated, washed with dilute HCl , dried, and concentrated. No isomerization (limit of detection 5%) was observed. In 1:1 AcOHHCOOH , the work-up was as above except for wash with dilute
NaHCO_{3} solution instead of HCl . The equilibrium mixture of the ethylenes was obtained from either isomer after 18 hr at 99.7°.
Kinetic Procedure. (a) With the Vinyl Halides. Ampoules were prepared and cleaned according to Grob and Cseh. ${ }^{34}$ Because of the low solubility in $80 \% \mathrm{EtOH}$, material for each ampoule was weighed independently, 7 ml of the solvent-base mixture was added, and the sealed ampoules were kept at the reaction temperature for a few minutes and shaken for a few seconds to ensure complete dissolution. The ampoules were opened, and $5-\mathrm{ml}$ aliquots were titrated (Volhard) with AgNO_{3} using eosin indicator for the bromides and dichlorofluorescein for $5-\mathrm{Cl}$. The remaining 2 ml was evaporated, the residue was dissolved in CCl_{4}, washed with water, dried, evaporated, and dissolved in CS_{2}, and the cis-trans halide distribution was determined by using the ir calibration curves which were described earlier. ${ }^{1}$ Absorption of $\mathbf{2 5}$ does not interfere at the wavelength of interest. The acetates and the etherketone ratios were determined by nmr .
For reaction with sodium benzylthiolate, 0.1 M NaOH and 0.1 M benzyl mercaptan were used. The mixture was poured into chloroform, washed with $5 \% \mathrm{NaOH}$ until the complete removal of the thiol, and dried. The cis-trans ratio was determined by ir since $5-S R+6-S R$ has only a weak absorption at $575 \mathrm{~cm}^{-1}$.

The reaction in the carboxylic acid media was followed as described earlier. ${ }^{1}$
(b) With the Vinyl Sulfonates.'The organic mesylate (16.4 mg) was kept in a conductivity cell for 15 min at 60° until a complete dissolution. Conductivity water (2 ml) and 2,6-lutidine were added, the mixture was shaken, and the reaction was followed conductometrically. Infinity readings which were taken after 30 hr remained steady for several days. At our concentration range, the concentration-conductivity plot for 2,6 -lutidinium mesylate is linear. Rate constants were calculated with the aid of the KINDAT program, ${ }^{52}$ using at least 30 experimental points.

Acknowledgments. We are indebted to the Volkswagen Foundation for support, to Dr. Peniel Greenzaid for discussions, and to Professor P.v. R. Schleyer for preprints.

References and Notes

(1) Part XX: Z. Rappoport and Y. Apeloig, J. Amer. Chem. Soc, 97, 821 (1975).
(2) For preliminary communications, see Z. Rappoport and Y. Apeloig, (a) Isr. J. Chem., 7, 33p (1969); (b) Tetrahedron Lett., 1817 (1970); (c) ibid., 1845 (1970); (d) Abstracts, Second IUPAC Conference on Physical Organic Chemistry, Noordwijkerhout, April 28 to May 2, 1974, p 38.
(3) For an extensive review dealing with ion pairs in solvolysis reactions, see D. J. Raber, J. M. Harris, and P. V. R. Schleyer in "lons and lon Pairs in Organic Reactions," Vol II, M. Szwarc, Ed., Wiley-Interscience, New York, N.Y., 1973.
(4) General references for vinylic solvolysis: (a) H. G. Richey, Jr., and J. M. Richey, "Carbonium lons," Vol. II, G. A. Olah and P. v. R. Schleyer, Ed., Interscience, New York, N.Y., 1970; (b) M. Hanack, Accounts Chem. Res., 3, 209 (1970); (c) C. A. Grob, Chimia, 25, 87 (1971); (d) G. Modena and U. Tonellato, Advan. Phys. Org. Chem., 9, 185 (1971); (e) P. J. Stang, Progr. Phys. Org. Chem., 10, 205 (1973)
(5) (a) R. H. Summerville and P. v. R. Schleyer, J. Amer. Chem. Soc., 94, 3629 (1972); ibid., 96, 1110 (1974); (b) R. H. Summerville, C. A. Senkler, P. v. R. Schleyer, T. E. Dueber, and P. J. Stang, ibid., 96, 1100 (1974); (c) T. C. Clarke, D. R. Kelsey, and R. G. Bergman, ibid., 94, 3626 (1972): (d) T. C. Clarke and R. G. Bergman, ibid., 94, 3627 (1972); (e) D. R. Kelsey and R. G. Bergman, ibid., 92, 228 (1970); ibid., 93, 1941 (1971); (f) C. A. Grob and R. Nussbaumer, Helv. Chim. Acta, 54, 2528 (1971); (g) A. C. Day and M. C. Whiting, J. Chem. Soc. B. 991 (1967); (h) R. C. Macomber, J. Amer. Chem. Soc., 92, 7101 (1970).
(6) (a) G. Modena and U. Tonellato, Chem. Commun., 1676 (1968); (b) J. Chem. Soc. B, 374 (1971).
(7) (a) S. Winstein and G. C. Robinson, J. Amer. Chem. Soc., 80, 169 (1958); (b) S. Winstein, B. Appel, R. Baker, and A. Diaz, Chem. Soc., Spec. Publ., No. 19, 109 (1965).
(8) (a) S. Winstein, E. Clippinger, A. H. Fainberg, R. Heck, and G. C. Robinson, J. Amer. Chem. Soc., 78, 328 (1956); (b) C. K. Ingold, "'Structure and Mechanism in Organic Chemistry," 2nd ed, Cornell University Press, Ithaca, N.Y., 1969, p 483.
(9) (a) L.C. Bateman, M. G. Church. E. D. Hughes, C. K. Ingold, and N. A. Taher, J. Chem. Soc., 979 (1940): (b) B. Bensley and G. Kohnstam, ibid., 3408 (1955); (c) G. Kohnstam and B. Shillaker, ibid., 1915 (1959); (d) S. Winstein and B. R. Appel, J. Amer. Chem. Soc., 86, 2720 (1964); (e) I. L. Reich, A. F. Diaz, and S. Winstein, ibid., 94, 2256 (1972).
(10) (a) Z. Rappoport and A. Gal, Tetrahedron Lett., 3233 (1970); (b) Z. Rappoport and A. Gal, J. Chem. Soc. Perkin Trans. 2, 301 (1973): (c) M. D. Schiavelli, S. C. Hixon, H. W. Moran, and C. J. Boswell, J. Amer. Chem. Soc., 93, 6989 (1971); (d) Z. Rappoport and M. Atidia, Tetrahedron Lett., 4085 (1970); J. Chem. Soc.. Perkin Trans. 2, 2316 (1972); (e) A. Gal, Ph.D. Thesis, The Hebrew University, 1972; (f) Z. Rappoport and Y. Houminer, J. Chem. Soc., Perkin Trans. 2, 1506 (1973); (g) Z. Rappo-
port and J. Kaspi, J. Amer, Chem. Soc., 96, 586 (1974); (h) L. L. Miller and D. A. Kaufman, ibid., 90, 7282 (1968); (i) Z. Rappoport and J. Kaspi, ibld., 92, 3220 (1970); J. Chem. Soc., Perkin Trans. 2, 1102 (1972); (j) J. Amer. Chem. Soc., 96, 4518 (1974); (k) I. Ugi. F. Beck and U. Fetzer, Ber., 95, 126 (1962); (I) J. B. Aylward and F. L. Scott, J. Chem. Soc., B, 1080 (1969); (m) F. L. Scott, M. Cashman, and A. F. Hegarty, ibid., 1607 (1971); (n) P. A. Cashell, A. F. Hegarty, and F. L. Scott, Tetrahedron Lett., 4767 (1971).
(11) For simplicity, only one ion pair was included in Schemes I and III, although more than one ion pair may be actually involved in the solvolysis.
(12) S. Winstein, R. Baker, and S. Smith, J. Amer. Chem. Soc., 86, 2072 (1964).
(13) The following orders of $1-F$ values were reported: $80 \% \mathrm{EtOH}(0)=$ $\mathrm{HCOOH}(0)<\mathrm{ACOH}(0.82)<\mathrm{TFA}(0.91)$ for $\mathrm{PhCHMeCH} \mathrm{H}_{2} \mathrm{OTs}^{1}{ }^{14 \mathrm{a}}$ $\mathrm{HCOOH}(0.09)<\mathrm{TFA}(0.58)<\mathrm{AcOH}(0.62)$ for 2-PhEtOTs; $9 \mathrm{e}, 14 \mathrm{~A} \mathrm{AcOH}$ (0.96) $>\mathrm{HCOOH}(0.80)$ for norbornyl- $\mathrm{Br} ;^{7 b} \mathrm{AcOH}(0.91)>\mathrm{HCOOH}$ (0.75) for norbornyl-CI; 14c $\mathrm{AcOH}(0.71)>\mathrm{EtOH}(0.66)$ for norbornylOBs ; ${ }^{14 \mathrm{~d}} \mathrm{EtOH}(0.23)>75 \% \mathrm{AcOH}-25 \% \mathrm{HCOOH}(0.09)<50 \% \mathrm{AcOH}-$ $50 \% \quad \mathrm{Ac}_{2} \mathrm{O}(0.44)<\mathrm{AcOH}$ (0.76) for threo-3-anisyl-2-Bu$\mathrm{OBs} ;^{7 \mathrm{~b}, 12} \mathrm{AcOH}(0.20)>\mathrm{EtOH}(0)$ for cyclobutyl-OMs; ${ }^{14 e}$ and AcOH (0.08) $>$ EtOH (0) for cyclobutyl-OTs. ${ }^{14 \theta}$
(14) (a) D. J. Raber, J. M. Harris, and P. v. R. Schleyer, J. Amer. Chem. Soc., 93, 4829 (1971); A. F. Diaz and S. Winstein, ibid., 91, 4300 (1969): (b) J. L. Coke, F. E. McFarlane, M. C. Mourning, and M. G. Jones, ibid., 91, 1154 (1969); M. G. Jones and I. L. Coke, ibid., 91, 4284 (1969); J. W. Clayton and C. C. Lee, Can. J. Chem., 39, 1510 (1961); (c) J. P. Hardy, A. Ceccon, A. F. Diaz, and S. Winstein, J. Amer. Chem. Soc., 94, 1356 (1972); (d) S. Winstein and D. Trifan, ibid., 74, 1154 (1952); (e) D. D. Roberts, J. Org. Chem., 37, 1510 (1972).
(15) A. F. Diaz, I. Lazdins, and S. Winstein J. Amer. Chem. Soc., 90, 1904 (1968), reported the following $1-F$ values: $\mathrm{TFA}-\mathrm{NaOOCCF}_{3}(0.95)>$ $\mathrm{HCOOH}(0.89)>\mathrm{AcOH}(0.86)>\mathrm{MeOH}(0.52)$ for 2 -octyl-OBs; and TFA$\mathrm{NaOOCCF}_{3}(0.88)>\mathrm{AcOH}(0.08)>\mathrm{HCOOH}(0.74)$ for trans-4-tert-butylcylcohexyl-OTs.
(16) (a) H. L. Goering and M. M. Pombo, J. Amer. Chem. Soc., 82, 2515 (1960); (b) H. L. Goering, M. M. Pombo, and K. D. McMichael, ibid., 85, 965 (1963); (c) H. L. Goering, R. G. Broido, and J. F. Levy, ibid., 85, 3059 (1963); (d) H. L. Goering and E. C. Linsay, ibid., 91, 7435 (1969).
(17) Z. Rappoport and Y. Apeloig, J. Amer. Chem. Soc., 91, 6734 (1969).
(18) For facilitating comparison, the numbering of the compounds is either identical with or follows that of the preceding paper.
(19) The error involved in this assumption is small since (i) starting from $5-\mathrm{Br}$ (or $6-\mathrm{Br}$) ca. 35% of the isomeric bromide was observed at the end of the reaction, and (ii) the $5-\mathrm{Br}-6-\mathrm{Br}, 5-\mathrm{Cl}-6-\mathrm{Cl}, 5-\mathrm{OAC}-6-\mathrm{OAC}$, and $5-$ OMs-6-OMs equilibrium ratios are 54:46 in AcOH^{1} or in acetonitrile and should be only slightly solvent dependent.
(20) Following Ingold ${ }^{8 b}$ we define $\alpha_{\text {app }}$ for competition between X^{-}and the solvent SOH as the ratio between the second- and the pseudo-firstorder constants for capture of R^{+}by X^{-}. Its dimensions are reciprocal concentrations.
(21) The nmr of the mixture shows the methyl groups as two merging triplets with similar intensities.
(22) When $\left[\mathrm{Br}^{-}\right] \gg$ [substrate $],([5-\mathrm{Br}]+[6-\mathrm{Br}]) /([5-\mathrm{OEt}]+[6-\mathrm{OEt}]+$ $[25])=k_{r}\left[\mathrm{Br}^{-}\right] / k_{\text {SOH }}^{7}[\mathrm{SOH}]=\alpha_{\text {app }}\left[\mathrm{Br}^{-}\right]$. The $\alpha_{\text {app }}$ calculated by this method will be a lower limit since the $\left[\mathrm{Br}^{-}\right]$decreases slightly during the experiment.
(23) (a) P. E. Peterson and F. J. Waller, J. Amer. Chem. Soc., 94, 991 (1972); (b) T. W. Bentley, F. L. Schadt, and P. v. R. Schleyer, ibid., 94, 992 (1972).
(24) Similar ratios were aiso observed for the $5-\mathrm{H}-6 \cdot \mathrm{H}$ and the $5-\mathrm{OMs}-6$ OMs equilibria.
(25) (a) Z. Rappoport, Advan. Phys. Org. Chem., 7, 1 (1969); (b) Z. Rappo-
port and A. Gal, J. Org. Chem., 37, 1174 (1972).
(26) Z. Rappoport and A. Gal, J. Amer, Chem. Soc., 91, 5246 (1969).
(27) Z. Rappoport and A. Topol, J. Chem. Soc., Perkin Trans. 2, 1823 (1972).
(28) (a) P. E. Peterson and J. M. Indelicato, J. Amer. Chem. Soc., 90, 6515 (1968); (b) W. M. Schubert and G. W. Barfknecht, ibid., 92, 207 (1970); (c) Z. Rappoport, T. Bässler, and M. Hanack, ibid., 92, 4985 (1970).
(29) (a) P. E. Peterson and R. I. Bopp, ibid., 89, 1283 (1967); (b) S. R. Hooley and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1053 (1973).
(30) (a) Z. Rappoport and J. Kaspi, Tetrahedron Lett., 4039 (1971); (b) unpublished results.
(31) At very high external Br^{-}concentration, the change in $\left[\mathrm{Br}^{-}\right]$due to the reaction is small, and the corresponding error in k_{t} is iarge.
(32) Isomerization via ion pairs in aqueous EtOH was previously suggested for $(E)-1-p-$ methoxyphenyl-1-bromopropene. "
(33) The slight preference for formation of $6-\mathrm{Br}$ in this experiment contradicts the slight preference for formation of $5-\mathrm{Br}$ when 7 is captured in AcOH. This may be due to a required small correction of the calibration curves due to the absorption of the ethers and suggested the use of 1 as the $5-\mathrm{Br}-6-\mathrm{Br}$ ratio.
(34) C. A. Grob and G. Cseh, Helv. Chim. Acta, 47, 194 (1964).
(35) Z. Rappoport and Y. Apeloig, unpublished results.
(36) (a) E. Grunwald and S. Winstein, J. Amer. Chem. Soc., 70, 846 (1948); (b) S. Winstein, E. Grunwald and H. W. Jones, ibid., 73, 2700 (1951); (c) A. H. Fainberg and S. Winstein, ibid., 78, 2770 (1956).
(37) Ritchie N_{+}values [C. D. Ritchie, Accounts Chem. Res., 5, 348 (1972)] should be appropriate nucleophilic parameters, at least for reactions of 7, but these are not available for our solvents.
(38) The term " m " was used for convenience in discussing the solvent effect for solvent pairs. It does not imply linearity of $m \mathrm{Y}$ plots.
(39) (a) P. J. Stang and R. Summerville, J. Amer. Chem. Soc., 91, 4600 (1969); (b) W. M. Jones and D. D. Maness, ibid., 91, 4314 (1969): 92, 5457 (1970); (c) L. R. Subramanian and M. Hanack, Chem. Ber., 105, 1465 (1972).
(40) For definitions and discussion of the k_{s}, k_{c}, and k_{Δ} terms, see P. v. R. Schleyer, J. L. Fry, L. K. M. Lam, and C. J. Lancelot, J. Amer. Chem. Soc., 92, 2542 (1970).
(41) R. Heck and S. Winstein, J. Amer. Chem. Soc., 79, 3432 (1957).
(42) S. G. Smith, A. H. Fainverg, and S. Winstein, ibid., 83, 618 (1961).
(43) D. J. Raber, R. C. Bingham, J. M. Harris, J. L. Fry, and P. v. R. Schleyer, J. Amer. Chem. Soc., 92, 5977 (1970).
(44) S. Winstein, L. Savedoff, S. Smith, I. Stevens, and J. Gall, Tetrahedron Lett., 24 (1960); A. J. Parker, Advan. Phys. Org. Chem., 5, 173 (1967); Chem. Rev., 69, 1 (1969).
(45) (a) K. A. Copper and E. D. Hughes, J. Chem. Soc., 1183 (1937); (b) E. D. Hughes and U. G. Shapiro, ibid., 1177 (1937); (c) P. v. R. Schleyer and R. D. Nicholas, J. Amer. Chem. Soc., 83, 2700 (1961); (d) A. H. Fainberg and S. Winstein, ibid., 79, 1597, 1602, 1608 (1957).
(46) H. M. R. Hoffmann, J. Chem. Soc., 6753, 6762 (1965).
(47) Z. Rappoport, J. Kaspi, and Y. Apeloig, J. Amer. Chem. Soc., 96, 2612 (1974).
(48) This discrepancy results from the higher ΔH^{*} based on k_{t}, which in our opinion may contain relatively high error. Nevertheless, this behavior calls for caution regarding generalizations concerning the $k_{\mathrm{OT},}, k_{\mathrm{Br}}$ ratios as a function of k_{t} or $k_{i o n}$, where one or several of the k 's are based on extrapolation.
(49) For discussion of errors in the activation parameters, see R. C. Peterson, J. H. Markgraf, and S. D. Ross, J. Amer. Chem. Soc., 83, 3819 (1961).
(50) T. W. Bentley and P. v. R. Schleyer, submitted for publication.
(51) S. Winstein and H. Marshall, J. Amer. Chem. Soc., 74, 1126 (1952).
(52) R. C. Williams and J. W. Taylor, J. Chem. Educ., 47, 129 (1970).

